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" Proposed Mercury Regulation

TABLE 10. EMISSTION LIMITATIONS FOR COAL-FIERED AND SOLID
OIL-DEEIVED FUEL-FIEED EGUS
Subcategory Total Hydrogen Mercury
particulate chloride
matter
Existing coal- 0.030 0.0020 " 1.0 1b/TBtu
fired unit 1b/MMBtu 1b/MMBtu (0.0008
designed for (0.30 1b/MWh) (0.0DZ20 1b/GWh)
coal > 8,300 1b/MWh) v
Btu/lb
Existing coal- 0.030 0.0020 11.0 1b/TBtu
fired unit 1b/MMBtu 1b/MMBtu (0.20 1lb/GWh)
designed for (0.30 1b/MWh) (0.020 4.0 1b/TBtu*
coal < 8,300 1b/MWh) (0.040
Btu/lb 1b/GWh*)
Existing - IGCC 0.050 0.00050 3.0 1b/TBtu
1b/MMBtu 1b/MMBtu (0.020
(0.30 lb/MWh) (0.0030 1b/GWh)
1b/MwWh)

Note: 1.0 Ib/Tbtu = 1.5 ug/Nm3 (dry, 3% O,)

www.epa.gov/airquality/powerplanttoxics/pdfs/proposal.pdf

ENVIRONMENTAL PROTECTION AGENCY
40 CFR Parts 60 and 63
[EPA-HQ-OAR-2009-0234; EPA-HQ-OAR-2011-0044, FRL-9148-5]
RIN 2060-AP52

National Emission Standards for Hazardous Air Pollutants
from Coal- and Oil-fired Electric Utility Steam Generating
Units and Standards of Performance for Fossil-Fuel-Fired
Electric Utility, Industrial-Commercial-Institutional, and
Small Industrial-Commercial-Institutional Steam Generating
Units
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Uncontrolled Mercury Emissions (Ib/Tbtu)

based on coal Btu and Hg content — assumes no native removal

14,000 14 2.9 4.3 5.7 7.1 8.6 10.0 11.4 12.9 14.3 15.7 17.1 18.6 20.0 214
13,500 15 3.0 4.4 5.9 74 8.9 10.4 11.9 133 14.8 16.3 17.8 19.3 20.7 22.2
13,000 1.5 3.1 4.6 6.2 7.7 9.2 10.8 123 13.8 15.4 16.9 18.5 20.0 21.5 23.1
’J)\ 12,500 1.6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4 16.0 17.6 19.2 20.8 22.4 24.0
% 12,000 1.7 33 5.0 6.7 8.3 10.0 11.7 13.3 15.0 16.7 18.3 20.0 21.7 23.3 25.0
i 11,500 1.7 3.5 5.2 7.0 8.7 10.4 12.2 13.9 15.7 17.4 19.1 20.9 22.6 24.3 26.1
\-B, 11,000 1.8 3.6 5.5 7.3 9.1 10.9 12.7 14.5 16.4 18.2 20.0 21.8 23.6 25.5 27.3
% 10,500 1.9 3.8 5.7 7.6 9.5 11.4 133 15.2 17.1 19.0 21.0 22.9 24.8 26.7 28.6
E 10,000 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0
‘_g 9,500 2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.1 23.2 25.3 27.4 29.5 31.6
O 9,000 2.2 4.4 6.7 8.9 11.1 133 15.6 17.8 20.0 22.2 24.4 26.7 28.9 31.1 33.3
8,500 2.4 4.7 7.1 9.4 11.8 14.1 16.5 18.8 21.2 23.5 25.9 28.2 30.6 32.9 35.3
8,000 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 22,5 25.0 27.5 30.0 32.5 35.0 37.5

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

Coal Mercury Content (ppmw, dry)



Coal Btu/lb (dry basis)

Required Mercury Removal (%)

to meet 1 |b/Tbtu - based on coal Btu and Hg content

14,000 | 30 65 77 83
13,500 | 33 66 78 83
13,000| 35 68 78 84
12,500 | 38 69 79 84
12,000 | 40 70 80 85
11,500 | 43 71 81 86
11,000 | 45 73 82 86
10,500 | 48 74 83 87
10,000 | 50 75 83 88
9,500 53 76 84 88
9,000 55 78 85 89
8,500 58 79 86 89
8,000 60 80 87 90

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Coal Mercury Content (ppmw, dry)



“Mercury Concentrations for U.S. Coals

Mercury

Ibs Hg/10'2 BTU
. 24
4-6
6-9
9-15
Bl 15-30
Bl 30-52
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CO-BENEFIT'CAPTURE

/ﬁ/ODEDICATED MERCURY CONTROLS

MAXIMIZING MERCURY OXIDATION CRITICAL TO CO-BENEFIT CAPTURE

Optimize All Pieces of the Puzzle

i SCR L
|

VVVV
= (Serubben)
(APH )

Fly Ash Recirculation

\

Hg Capture Hg Capture

Fly Ash Gypsum

Bottom Ash/ Slag




- Puzzle Piece:

o

Fuel controls the mercury input and removal
required.

Low heating value effectively increases mercury
removal requirement for constant mercury content
on ppmw basis.

Coal halogen level may be more important than the
coal mercury content — but both must be considered.

Higher sulfur coal will result in more generally result
iIn more SO3 which may impact mercury adsorption.

Pay attention to coal purchasing arrangements and
specifications.

Best Coal: high halogen, high Btu, low mercury
Worst Coal: low halogen, low Btu, high mercury



~—— Puzzle Piece: BOILER

« Boiler conditions favor elemental mercury — most
reactions of interest take place as flue gas cools
through economizer and other downstream
devices.

» Boiler operation affects SO3 formation which in

| | turn potentially affects particulate and mercury
. capture.
Boiler
'_5/  The boiler controls LOI which will affect native
mercury capture — higher LOI generally good for
mercury capture.

» Boiler will affect NOx and O2 which may in turn
affect SCR mercury oxidation

» Boiler operation will likely affect SCR operating
temperature, which in turn affects mercury
oxidation — LOWERED ECONOMIZER OUTLET
TEMPERATURES WILL GENERALLY HELP WITH
MERCURY OXIDATION AND CAPTURE



PFE——ruz

 Lower temperature operation favors mercury oxidation.

* Minimize ammonia slip to improve mercury oxidation:
maintain reactor potential, avoid mal-distributions, fouling,
etc. However, how does slip affect mercury capture?

« Higher reactor potential margins will maximize mercury
oxidation: More catalyst = more mercury oxidation, all other
factors being equal.

« Some evidence that high SO2 conversion improves mercury
oxidation, but high SO3 may adversely affect mercury
capture. Better understanding of catalyst trade-offs needed.

 Mercury oxidation will decline with catalyst age — implement
good catalyst management plans.

« Conventional SCR catalysts need halogens !

 Hope for continued improvement in catalyst as well as
advanced catalyst designs. More research needed.



~Puzzle Pie

Mercury speciation of real interest is at the air
preheater outlet — this is the best indicator of
speciation entering devices that actually capture
the mercury.

Data show that mercury oxidation continues to
occur as flue gas is cooled through air preheater —
SPECIATION IS NEVER STATIC !

Lowered APH outlet temperature generally good
for all downstream devices in terms of mercury
capture.

More work needed to understand APH impacts and
ways that APH operation can be optimized for
mercury oxidation and capture.



 Optimize ESP to do its job — remove particulate !

* Reminder: Coal characteristics will affect ash resistivity,
humidity, SO2/S03, etc., which will all in turn affect particulate
and mercury removal.

* Fine particulate may demonstrate enrichment in terms of
mercury capture, so improvements aimed specifically at
capturing fines may be especially helpful.

 Be careful of the impacts of improved particulate capture on
mercury removal: SO3 conditioning may help particulate
removal but hurt mercury removal, due to interference with
active mercury sorption sites. Impact of ammonia
conditioning ?

 Optimize rapping to minimize re-entrainment.

* Novel ideas for improving ESP capture ?
Example: Ancillary cooling/humidification

« |If scrubber is located downstream, focus may be minimizing
elemental mercury breakthrough, rather than total mercury
removal.



/Puzzle Pi

» Fabric filter generally better at removing mercury due to
improved particulate capture and improved gas/solid
contacting/mass transfer.

* Most parameters affecting ESP mercury capture will
similarly affect fabric filters, at least qualitatively.

Blowback/cleaning operations critical to minimizing re-
entrainment and mercury re-emission.

Fabric filter mercury capture may be particularly to
sensitive to LOI, SO3, ash minerals etc. as compared to
ESP.

Fly ash acts as a “native” sorbent, so ash parameters,
including PSD, surface area, and ash minerals will affect
mercury capture.

Presence of downstream scrubber may affect the
scenario for optimized mercury removal —if scrubber
present, the focus may be minimizing elemental mercury
breakthrough, rather than total mercury removal.




Addition of SO2 sorbent impacts overall mercury removal
as compared to FF alone.

Longer overall residence times, higher mass loading,
coupled with temperature quench generally improves
capture.

Very high removals noted for high-halogen flue gas —
removal generally poor for PRBs due to high elemental
proportion.

Any action that improves mercury oxidation entering the
SDA/FF will generally improve capture.

Optimize FF operation for particulate removal, minimize
re-entrainment, etc.

Lack of downstream scrubber means that SDA/FF must
maximize capture, not just minimize elemental mercury
breakthrough.
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Wet

Primarily only removes oxidized mercury.

Everything upstream affecting mercury
speciation in turn will affect scrubber capture.

Re-emission of elemental mercury a problem —
very little margin for re-emission when 90%-+
removal needed.

Various operational conditions affect mercury
capture and re-emission — dependent on specific
scrubber design.

Scrubber additives have the potential to
maximize oxidized mercury capture, and
minimize elemental mercury re-emission.
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/ DEDICATED CONTROLS

1. Halogen Addition

2. Sorbent Systems



/X/

Halogen Addition

e Bromine via Coal Additives
 Chlorine via Coal Additives

* Chlorine via Fuel Switching
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romine and Chlorine Inter-Related

Coals low in Chlorine will also generally be low in Bromine
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- Bromine Has Synergistic Effect
(in some cases)

1. Improves mercury oxidation In
virtually all down-stream equipment.

2. Improves the apparent capture
of the oxidized mercury.



KNX Technology for mercury
control from coal-fired boil€fs
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romine effects on PRB plant with SCR-SDA/FF
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/ ine effect on - yture with

low chlorine eastern bituminous coal
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Chlorine Effects

1. Chlorine can have similar effect
to bromine, but much more required.

2. Primary effect due to improved mercury
oxidation, although synergistic effect
may also be present, similar to bromine.



/ple Chlorine HCI) on SC ation

with low chlorine eastern bituminous fuel

| # SCR Outlet |

100%
90% /’,7___?—"‘”
80% 2 ¢

70% 7/
60%

50% /

40%

Oxidized Mercury

30%

20%

10%

0% I U U U U U I
0 50 100 150 200 250 300 350 400

Chlorine (ppmv)




(\\\

1.'

Effect c ending (high to |
- chlorine) on SCR Mercury OX|dat|on

Remember: fuel blending changes a lot more than chlorine !

oo

20 4

B 5CE Outlet
@ SCE. Inlet

M
SEPA i

Evaluation of the Impact of Chlorine

on Mercury Oxidation in a
Pilot-Scale Coal Combustor —the

._ Effect of Coal Blending
T T T T T T T
&

100 BIT 6335 Blend 7030 Eleu-:l ’."4 "'ﬁBlend ’."El 21 Blend 91 9 Blaud I:H]"* PF.B

70 -

L=
o]
1

Percent Oxadized Mercury
& P> &

=

i
=]

=



/ SORBENT INJECTION
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~Sorbent Efficiency Affectedby

Many Parameters

« Sorbent Design: general type, specific chemistry, SA,
PSD

 Injection Rate

 Type of particulate control device and specific design
« Mercury speciation

 Flue gas halogens (inter-related with speciation)

« SO2/S03

« Temperature

 Distribution

« Residence Time
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Carbon Upstream of FF

100

A B o ——N
a0 | o2 o 7 g g

—_

& Gaszton, Bit, COHPAC

% PAC-Pilot-Subbit-FF

O PALC, Valley, Bit, Pilot FF
ABPAC Valley, Bit Pilot FF
o BPAC, 510, Lig, SDAFF
% PAC, 510, Lig, SDAFF

30 40 5.0 6.0 7.0
Injection Rate (Ib/MMacf)

Control of Mercury Emissions from Coal Fired Electric Utility Boilers:
An Update

by

Ravi Strivastava
Air Pollution Prevention and Control Division
National Risk Management Research Laboratory
Research Triangle Park, NC 27711



me Effect of SO3 on ACI

..........

Figure 7. Summary of mercury removal results with DARCO® Hg-LH.
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- Example Effect of SO, on ACI Capture

Coal-to-ESP Outlet Removal, %

EERC YZ33564.COR
+ ~5 |b/Macf ACI in lllinois Coal
® ~9 |b/Macf ACI in lllinois Coal
A ~-18 Ib/Macf ACI in lllinois Coal

70 +

40 t

T ———— T e

30 ¢+

20 1 &

&
10 . v v . "
0 5 10 15 20 25

SO, Vapor Concentration, ppm

30

JV TASK 124 - UNDERSTANDING MULTI-
INTERACTIONS OF SO;, MERCURY, SELENIUM,
AND ARSENIC IN ILLINOIS COAL FLUE GAS
Final Report

for the peviod April 1, 2005, through March 31, 2009)

Prapa




Removal of Total Merucury, Hg', (%)
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Figure 5. Temperature Impacts on the Performance of Activated Carbon on Gas Streams
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FULL-SCALE EVALUATION OF MERCURY CONTROL
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ESPS
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Cam Martin. Richard Schlager
ADA-ES. Inc. 8100 SouthPark Way, Unit B, Littleton, CO 80120



- Example Effect of SO, on ACI Capture

Coal-to-ESP Outlet Removal, %
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CONCLUSIONS: CO-BENEFITS

Lot’s of opportunities to improve current equipment to optimize
mercury oxidation.

Facilities firing high-halogen coals equipped with SCRs and wet
scrubbers will be best suited to meet current regulations —
optimization will still probably be necessary depending on fuel.

Some facilities without wet scrubbers, but with good inherent
mercury oxidation (including SCRs), may be able to meet
regulations.

Facilities firing low halogen fuels such as PRB and low-chlorine
eastern bituminous coal will find it difficult to meet regulations
with any configuration, even with optimization, unless some form
of dedicated control is used (halogen injection, sorbent injection,
etc.)



~ CONCLUSIONS: DEDICATED CONTROLS

« Halogen addition very effective for improving mercury
oxidation and capture, especially for halogen-depleted
coals.

« Halogen injection may be needed even with sorbent
Injection to meet regulations, or at least to maximize
efficiency and minimize sorbent costs.

» Lots of different options for sorbent injection location,
design, particulate control device, sorbent design, etc. —
no single solution.

« Sorbent injection has limitations and many of the
optimization techniques used for co-benefit control will
Improve sorbent efficiency, and may in fact be required
to meet regulations.



